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ParT-A

nsider a source x that produces five symbols
< f1ri 1

with 24’876’ 16 probabilities. Determine
source entropy H(X).

(R.T.U. 2017]

5
: 1
Anms. H(s) = ZP‘ log, —

.
1

- fiog:izhi'iog:14)+é]og:(8)+%log3(]6)

1
+—log, (16
16 °8: (16)

=0.5+0.5+0.375+0.25+0.25 = 1.875 bits/symbol
Information rate, R
R = r,H (s) bits/sec = 1000 x-1.875 bits/sec

0.2 ontinuous signal is band limited to SkHz The
signal is quantized in 8 levels of a PCM system
with the probabilities 0.25, 0.2, 0.2, 0.1, 0.1, 0.05,
0.05 and 0.05. Calculate the entropy and rate of
information.

[Note : Read SkH: = 5 kHz/. [RTU. 2016)

Ans. The signal should be sampled at a frequency
5 x 2= 10 kHz (Sampling theorem) . Each sample is then
quantized to one of the eight levels. Looking at each

quantized level as a message.

We get,
H=-(0.2510g0.25+ 0.2 log 0.2+ 0.2 log 0.2

+0.1 log 0.1+0.1 log 0.1
+0.05 log 0.05 + 0.05 log 0.05
+0.05 log 0.05)
= 2.74 bits/message
As the sampling frequency is 10 kHz, the message
rate = 10,000 messages/sec. Hence, the rate of information is
R=rH= 10,000 x 2.74 = 27,400 bits/sec.

a— e i

'Q.3 ) Define Joint Entropy.

[R.T.U. 2016/

e
e

Ans. Joint Entropy : The joint entropy of two discrete
random variables X and Y is merely the entropy of their
pairing: (X,Y). This implies that if X and Y are independent,
then their joint entropy is the sum of their individual
entropies. For examples, if (X,Y) represents the position
?f a chess piece — X the row and Y the column, then the
Joinllentropy of the row of the piece and the column of
the piece will be the entropy of the position of the piece.

H(X.Y) =By [—logp(x,y)]

- —Z P(x,y)log p(x,y)

Define Information Rate. IR.TU. 2016}
-
—_—
Ans. Information Rate : The information rate is
represented by R and it is given as,

Information Rate R = rH

Here R is the information rate.

H is the entropy or average information.

e S



Qs;A high resolution black and white TV picture
consists of about 2 x 10° picture elements and 16 .
different brightness levels. Pictures are repeated

i at rate of 32 per sec. All picture elements arc
assumed to be independent and all levels have

equal likelihood of occurance, calculate the
average information conveyed by this TV picture

service?
Ans. Given
picture element =2 x 10°
symbols =16

repeatation rate = 32/sec
then H=log, M

= logy’

= log2’, = 4 bit/symbols
=2 x 10° x 32
=64 x 10® symbols/sec
then Info rat:
R=H"
=64 x 10° x 4 bit/sec
=12.56 x 10° bit/sec
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| of e ‘“Letters are a more formal method of written o

ust communication usually reserved for important

‘ fine following terms:

ion “messages such as proposals, inquiries, agreements, 7) Information
., + and recommendations. @ Mutual Information -~ [R.T.U. 2016}
nd * Presentations are usually oral and usually include 8
E?a! B audioyisua! ERRonont, like copies of i Ans.(i) Information :The principle of improbability
;:: . erron::ef:rll:ls}]pmpared i Miseatoft PowerPoint or (whiéh)is one of the basic prix]:ciples of the med.ia world)-
he *  Telephone l;:eeﬁngs/eonference calls allow for "if dog bites a man, it’s no news, but ifa man bltf.g adog,
ed ‘ ' long-distance interaction. it’'sa r.u':ws” —hclp' us in th|§ regard. ThF probability of a
®  Message boards and Forums allow people to dog biting a man is quite hlgl?, so this-is not a news, i.e.
n instantly post information to a centralized location. very little amount of mformati:n 1s communicated by the
*  Face-to-face meetings are personal, interactive fagsgage: f‘" dog bites 8 man”. On the other hand, the
exchanges that provide the richest communication probability of a man t'ntmg a dog is extreme.ly small, so
e and are still the preferred method of communication this becomes a news, i.e. quite an amount of information
in business. :

is communicated by the message “a man bites a dog”.

3 Thus, we see that there should be some sort of inverse °
gr a discrete memory less binary channel relationship between the probability of an event and the
#shown in fig. amount of information associated with it. The more the

probability of an event, the less is the amount of information
Y, associated with it, and vice versa. Thus,

CR o .
% 3 ¥

i ; Where Xj, is an event with a probability p(x’-), and -
(9) - Find channel matrix of the channel. 2 the amount of information associated with it is I(x)).
(i5) Find P(y), P(y,) when P(x) =P(x;) =, (ii) Mutual Information : Mutual inf ion i ti
(iii) Find P(%, y,) and P(x, y?) when P(x,) (i) Mutual Inform : Viutual information is a quantity

i Ten R I - S

that measures a relationship between two random variables
=Pfx)=.5 RT.U. 2017 that are sampled simultaneously. In particular, it measures
== how much information is communicated, on average, in
Ans.(i) Channel matrix one random variable about another. Intuitively, one might
Py, 1x) P(Y,|x,) ask, how much does one random variable tell me about
P(ylx) = [P(y, 1x,) PGy, | Xz):, another.
5 @] ' lj“or exgmple, suppose X represents the roll of a
P(ylx) = l:?— : . fau-_ 6-sided dlg, and Y represents whether the roll is even
2. (0 if even, 1 if odd). Clearly, the value of Y tells us
(i), P(y;) and P(y,) when P (x,) = P(x,) = .5 something about the value of X and vice versa. That is,
[ 9 .1 these variables share mutual information.
[P(y)] = [P(x)] [PyM)I=[.5 .5] [‘2 _gJ Mutual information measures the amount of
PO)] =55 .45] - informatiop that can be obt‘air.\ed aboutoa.u: random variable
[P(y))] = .55 and [P (y,)] = .45 -| by obs'ervmg another. It 1s important in communimtion
i) [P (x,, y3)] = [P(O)] [P(y/)] where it can be used to maximize the amount of information ;
s olo 1 shared bfatween sent and received signals. The mutual
- [ '0 SJ[Z ‘SJ information of X relative to Y is given by: |
[_45 MJ I(X;Y) =Exy[SI(x,y)] ?
10 40
pix,y i
P(x;, y;) = .05 - Tolos)or 2 1

P(xy, ) =.10. e p(x)p(y)
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< B.Tech. (V Sem.) C.S. Solved Papers)
Ans.(i) Refer 10 .7,
Ans. (ii) Murual Info is given by

I(x: ')'i if’(x ¥, )iog, ( ») wi K L)

il )

3 P(x,‘y.)
P . B O ol L2,
Bl -8
then from eq. (2) to (1)

I{xy)= i iP(: ¥ )log; P(x i )

but

(i)

iml  jwl P( )P( )
L Eres o PE)70)
; EP( ?;)Ioﬂz P( “}',)
A P{x,)?()’_,)
~1(xiy)=3 JE_IP{XJ-.V;]"’S:W - (3)
but we know that
;;,ﬂ IOS:( J - (4)
then by eq. (3) & (4) we get
-I(x:y) <0

Q.11 analog signal is bandlimited 10 Eﬁf_iz and
sampled at Nyquist rate. The samples are
quantized info 4 levels. Each level represents on
message. The probabilities of occurrence of these

4 levels (messages) are P, =P, -% and P, =P, =

Calculate

(i) Entropy (H)

(ii) Information rate (R) [R.TU. 2012, 2010f

Ans, Given
$° s
Peg . P =
1} 3
Pz = 8 " P‘ = E
(i) We know
Entrupy :
H= Z P; log; [P ]
1-: k
|
H= ZPI' '082[ J
kel ‘

;“'—-—
.

[quormaﬂnn Theory and Coding }

I 1 !
H=P Iug;[—}f’ Iog,{r—JJrP log —]
P, 2 108; P 3108, P,

+ P, log, [TI

|
)
H:-Ilnl, +1 2 3 E

3 2 (8) 81%2(3}'81082(3J

+il0' 3)
g 827

r:l 8 bitsfmessagcl Ans.

(ii) Information Rate (R) : We know that R = rH
But signal is sampled at Nyquist rate. So the Nyquist
rate = 2B sample/sec. and every sample generate are
message signal. So message per second
r =2 (2B) message/sec
= 4B message/sec,
So R=rH

=(4B).(1 Oy bits . Message
message sec.

R =72 bits/sec.| Ans.

Part-C

@f (a)\Siow that for a discrete binding channel:
R ”(\ Y) = H(X/’Y) + H(Y)

[R.T.U. 2018, Dec. 2013, 2013]
(i) H(X, ¥) = H(X) + H(Y) R.T.U. 2018]
(Q) Prove the following properties of mutual
!‘nfurmrmm:

T 16X:) = HO) ~ HOOY)
[R.TU. 2018, 2013, 2012, 2010}
\_/‘ (u) I(X;Y) = H(X) + H(Y) - H(X, Y)/R.T.U. 2018)
| (i) I(X;Y) = H(X) = H(Y) (for noise free
~channel) (R.T.U. 2018, 2013/

Ans.(a)(i) H(X, Y) = H(X/Y) + H(Y) : H(X,Y) = H(X/
Y) + H(Y) = H(Y/X) + H(X)

H(X.Y)= -2 2 p(X=i.Y = jlog, p(X =i,Y = ))
ial pai

m m

;ZZp(X—I,Y =]

1=l jul

[log, p(X =iXY = j/ X =)

[ ..p(X-:.Y—J) l
=p(X = i)p(Y = j/ X =i)

=3 Y pX=iY = j)

=l gl

[log, p(X = i) +log, p(Y = j/ X =1)]
[ logXY =log X +log Y]

ZZp{X =1,Y= jlog, p(X =1i)

-2 ¥ p(X =i, Y= jlog,p(Y =j/X =)

=i](,‘g;‘x nzp(Y_jrx=.|J

S S nx=i.¥ = Dlog, oY = jrx =iy
-,-‘Zp(\’=i:x=i)=i]
=3 p(X = i)log, p(X= i)]

+H =22 P(X=iY = j)log, p(Y = j/X = i)]

=H(X)+H(Y/X)

Now

HX, Y)=HY)+HX/Y)
—-ZZ PX=i,Y=j)logp(X=i,Y=j)
=ZZ P(X=1,Y=j)[logyp (Y=j)

PX=VY=))
[pX=iY=j =p(¥Y=ip(X=i/¥=j)

=-‘£ZI PX =1,Y =j) log,
PX=i,Y =) log, p (X=i/Y = j)
2L p(Y=j)p(X=i/Y=j)
+H(X/Y) logy p(Y =j)
=2 p(Y = log, p(Y = )) |

PSPX =i/ Y = ) +H(X/Y)
{.'ip()ﬁﬂ!\’:j]:l]

=l

=2 p(Y = jlog, p(Y= j)+H(X/ Y)

it

HXY)=H)+HX/Y)

{iTcs)

€ ) () Y Y Y 9 O

(
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(ires)

(ii) For a very noisy channel (independent), no relation
can be established between transmission and receiver, these

being independent:
Pi;j = P )
G = G ’
It follows that:
H(X/Y) = H(X) .
H(Y/X) = H(Y) oel)
Also, we know that
H(XY) = H(Y) + H(X/Y) .. (3)
I(X;Y) = H(X) - H(X/Y) o (4)
I(X;Y) = H(Y) - H(Y/X) wes ()

From (2), (3), (4), (5) we get
H(X, Y)=H(X) + H(Y)
I(X;Y)=0
Ans.(b)(i) Here H(X/ Y) is the conditional entropy and it
is given as,

lo
H(X/Y) ;;P( ,,J’,) By=r——>"% P( /J’,) (1)
H(X/Y)is the information or uncertainty in X after
Y is received. In other words H(X / Y) is the information
lost in the noisy channel. It is the average conditional self
information.
Consider the equation

I(X;Y Zn:iP(x,,yj)logz ('(/})lj)

i=] j=1
Let us write the above equation as,

Zip(")’f}logZ ( )

i=l je=l
- P(x;,y, |log
E; ( J) 2 P( yj)
From equation (1), above equation can be written as,

1(X:Y)=3 3 P(x,, ) log, P(' )-H(X/Y) {2

i=] j=1

Here let us use the standard probability relation
which is given as follows:

> P(x.3;)=P(x)

J=l
Hence equation (2) will be,

I(X;Y)= ZP(x,)log2 o )—H(XJY)

i=]

First term of the above equation represents entropy. i.e.,

X)= 5P (x)loga 5y e

I=l

Since above equation becomes

1(X;Y)=H(X)—H(%—)

(i) From H(X, Y) = H(X/Y) + H(Y) we know that
H(X/Y) = H(X, Y) - H(Y) (1)
Mutual information is given by
I(X;Y) = H(X) - H(X/Y) i.e
Putting for H(X/Y) in above equation from
equation (1)
I(X.Y) = H(X) + H(Y) - H(X, Y) (2)
Thus the required relation is proved.
(iiii) In the case of a noiseless channel, i.e. no interference
or perturbation, the structure of the noise matrix is:

0 =+ 0
P(Y/X) =| . (D)
00 0

Having only 0 and 1 as elements; when we transmit
the symbol x, we know with certainty the recewcd symbol.
As aresult:

H(X/Y) 0
{H(Y/X) 0 = {4)
We also know from I(X:Y) = H(X) - HX/Y) ... (3)
From (2) and (3) we obtain :
I(X5Y) = H(X) = H(Y)

Q.13 State and prove source coding theorem.

[R.T.U. 2016/
OR

What is source coding theorem ? State its utility.

[R.T.U. 2018]

Ans, Source Coding Theorem : Shanon’s source coding
theorem gives the range of the average code length L

for a uniquely and instantaneously decodable source code.

The minimum value of L lies within the range
H(m)<L<H(m)+e
Where € is a small positive quantity.

m

s L S L B

e e

T



2quation, we

...(vi)
rali k.

...(vii)

Juiprobable
less source

.. .(vii)

emory less
on for the

l(a) Conslder a DMS with tl:e alphabet (So’ S 2 S,) o

] 1 1
with probabilities P, "? P, "Z, P =-2-- Find

. out the entropy of the original source and second
order extension entropy?

(b) Two binary channels are connected in
cascade as shown in fig.

0.9 Y, 0ol g

08 Y, g
Fig.
(i) Find overall channel matrix and eqmvalem
channel diagram. ‘
(ii) Find P(Z,) andP(Zz) when P(XI) PX,)=05 *
- [R.TU 20131

1 R

. P S P R

O 2 3 l ) 4 ‘2 2
: Entropy of original source H(a)

Ans.(a) Given P

1
H(a) = ZP log, — P
i=0 i

I I PRPRY
o log, (4)+ 3 log,(2) 5 log,(2) = '2'blt3
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Now consider second order extension source.

Source alphabet o = (Sps S},°S,) consists of three symbols.

[k = no of symbols = 3]
Source alphabet of second order extension source
consists of nine symbols
K=32=9

These symbols are

Symbols o, G, 0, 03 0, 05 0, 0, G,
(55,1, 5,8, 568 8,8, S,S,, 8,8, 5,50 8,8, S,8,)

Probabilities of these in blocks that consists of 2
symbols are.

at=

pop (oLl 1L
Sl T CTT S
Entropy of second order extension

8
H(a?) = P(oi)log, (l)(ci)
- P

1 1 )
H(QZ) = E’ng (16) + E log,(16) + % log, (8)

1, 1
+1_glogz (16)+—log; (16)

1 1
‘ +§ log, (8) + E log, (8)

1 p
+ Elogz(B) - % log, (4)
=3 bits
Cross check the ans. by formula
H(a?) = 2H(q)

.

3 3 —2><2
M)(‘)[P(Y)] =[P(X)] P[P(Y | X)] (1)
[P(2)] =[P(Y)][P(Z| Y)] +(2)

_ (B-Tech_ (v Sem.) C.5. Solved Papers)
from equation (1) and (2) =

=[PCONPY [ XNP(Z| Y)]
PZ|X) =[P(Y|X)][P(Z| Y)]

_[09 0.17[0.9 o.
102 0802 o8

_[0.83 017
1034 066

-~ Resultant’s Matrix Diagram

X,

- 0.83

0.17"

Fig.
() [P(Z)]) =[p(x)) [P(Z|X)]

-[0.5 0.5][0.83 0.17]

0.34 0.66
=[0.585 0.415)

P(Z)) =0.585

P(Z;)) =0.415

Qaa
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Source CoDING SCHEMES
FOR Data CompAacTION

PRrevious YEars- QuEsTIONS——
e ————————— - .

Ans. Shannon - Fano coding
ParT-A ][ Pe)]] 1° 2 T 37 TCodeword L
Group | Group | Group
‘ x| 030 | 0 0 00 2
g X2 | 0.25 0 1 01 2
Q1 Consider a source S = [S,, S, with probabilities X | 0.20 I 0 0 100 |3
% and % respectively. Obtain Shkannon-fono code X | 0.12 ! 0 1 101 El
JSor source S, its 2" and 3 extensions, Calculate Xs | 0.08 1 1 0 110 3]
efficiency for each case. [R.TU. 2018) X | 0.05 1 ! 1 1 [3]
Entro
Ans. We can determine it
5
ai! _ 1
L =log21/8,=-0.41 H(¢) uMF _ommﬁﬂ_
h =log21/S,=-2 - i
.E..Q 7. =lga = 2.36 bits
o Average codeword length,
Construct a binary tree of depth 1.
T= YR,
k=0
Root =2.45 bits
Code efTiciency,
H(E)
The source codewords are L 1ag
x,:00 2.36
: = =2 100
2.45
(oply the S) n — Fano coding and find code T._ ) mm.w...wﬁ_
¢fficiency. ° e
—
N o~ g on x X X xd \c.a:itm\ a DMS with source probabilities
PG)] = [0.30 0.25 020 0.12 0.08 0.05) 20, 20, 15, 15, 10, 10, 05, 03)
Determine the Huffman code Jor this source,
IRTU. 2016/ IRTU. 2012)

P

N

Frr

- > B

-

e

1

{

b

y

- (i) Noise Free channel v’

"8 [R.T.U 2018, Dec. 2013]

(Tcas  —

Ans. Huffman Code
Code | X

001 020 020001 »020000 02501 p03s) 0351 Fosse

10 020 02010 020001 {020000 | 02501 040004 | 0451

Tl 015 OISIL Jo2000 020000 | 020 025014
010 | 018 015010 | 01511 {02010+ 03000

0000 | 010 0100t | oasoteq {0154

0001 | 0.0 010 010011

oo | 008 0.10 000

ot 0.05

Q.4  State Kraft Inequality Theorem.

Ang, Kraft Inequality Theorem : A necessary and
B Hmmnaan condition for the existence of a binary code with
codewords having lenghts », < m <..ny that satisfy the
prefix condition is

%

L

T2 <1

Define Prefix Code.

Ans, Prefix Code : This is variable length coding
algorithm. It assigns binary digits to the messages as per
their probabilities of occurrence. Prefix of the codeword
means any sequence which is initial part of the codeword.
In prefix code, no codeword is the prefix of any other
codeword.

ParT-B

9 -_\__.__.R short notes on :

(ii) Shannon’s theorem ~/

Ans. (i) Free Channel : The channel is called :oao,?an

or noiseless if it is both lossless and deterministic —i.e.
The channel matrix has only one element in each

row and on each column. ‘ .
Itis show in following Fig.

¥
.oﬁ_. Cd 1
3 Vv
k- > L
Yol > Ya

Flg. : Noiseless or noise free channel

It

g d

implicati
L.F
the way
channels
system &
as possit
2
theoren
ratio for
SUppost
bits/sec
To tran
channe
channe
transm
we car

1
noisel
naise
infini

powe
capa
band
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It is channel matrix coil be like this
M Py M)
X

't o

%2 1 0

POyix) =, ;0 o
i \G 0 l B ']

n

4

The binary symmetric channels are also comes
under noiseless channels.

[1-P
(PGy)] = |

A

e F.ig. Binary symmetric channel

-

implications forcommunication systems engineers.

1. First, it gives us the upper limit that can be reached in
the way of reliable data transmission rate over Gaussian
channels. Thus, a system designer always tries to optimize his
system to have a data rate as close to C given in equation (1),
as possible with an acceptable error rate.

2. The second implication of the Shannon-Hartley
theorem has to do with the exchange of signal-to-noise
ratio for bandwidth. To illustrate this aspect of the theorem,
suppose that we want to transmit data at a rate of 10,000
bits/sec. Over a channel having a bandwidth B = 3000 Hz.
To transmit data at a rate of 10,000 bits/sec, we need a
channel with a capacity of at least 10,000 bits/sec. If the
channel capacity is less than the data rate, then erroricss
transmission is not possible. So, with C = 10,000 bits/sec,
we can obtain the (S/N) requirement of the channel as

(SfN) gt 2({"5)_[ L2 :;3 33 | =6

The Shannon-Hartley theorem indicates that a
noiseless channel has an infinite capacity. However, when
noise is present the channel capacity does not approach
infinity as the bandwidth is increased because the noise
power increases as the bandwidth increases. The channel
capacity reaches a finite upper limit with increasing
bandwidth if the signal power is fixed. We can calculate

»L;_

\J(i){s_pﬁhanhﬂmnmﬁhe Shannon-Hartley theoref,—
is-6f fuidamental importance and has two important

{1ITC.15)

@'ru"armaﬂon Theory and Coding } ~
this limit as follows, With N = B, where 1/2 is the noise
power spectral density, we have

= s).[8)nB S
C= Bmg,[uﬁ} (n)[ S Jk’g‘(“na) (1)

= §Io I+—S_
* E; nB

Recalling that lim x—0 (1 + x)'”* = e and letting
x = §/mB we have

LimC= Elcng, =1 .44E
e q n
A communication systéem capable of transmitting
information at a rate of B log, (1 + S/N) is called an ideal
system. The ideal signalling scheme using noise like signals
can convey information at a rate approaching the channel
capacity only when T —>« . Only in the limiting case we
have all the conditions satisfied. Under this limiting
condition, the ideal system has the following characteristics:
{a) The information rate — B log, (1 + S/N).
By (b) The error rate — 0.
= s "(c) The transmitted and received signals have the
' characteristics of band limited Gaussian white
nojse.
(d) As T -»w the number of signals M —= and
coding delay also tends to .

(i Q.’I j._tﬂgl_'n Shannon The_qr_-e_r; and Shannon Limit.

I
{ LN esi i pindt
2 - [R.TU. 2016]

Ans. Shannon’s Theorem { Refer to Q.6. )
Shannon Limit : There exists a limiting value of E/N,
below which there can be no error-free communication
at any information rate. Using the identity

/j,{,' g lim(l+x)”x =e
ol | 5 X
i We can calculate the limiting value of E,/Nj as
U {le)WS:
s %
AT Ey(C (
VA ~ Alet X S| e 'I'?ir
N LW N7~
e il
- ‘»j‘j
v 1/x
Then, o = xlog, (1+x) ® {){;’\:
and b

1 :%logz(l +X)

In the limit, as C/W — 0, we get

B e b ot
Ny log,e
Or, in decibels,
E
ﬁ'; =-1.6dB

This value of Ey/Nj is called the Shannon limit,

Q.8 Derive the mathematical expression for channel
eapacity to transmit the information through it if
the channel capacity is :

- EAT
C-Blag,[l-i--ﬁ)A

[Note : Read B = a] [R.T.U. 2016]
S T v o S B S e e e R e R R,
Ans. The noise characteristics of channels encountered
in practice is generally Gaussian (channels with Gaussian
noise characteristic are known as Gaussian channels,)
Moreover, the result obtained for a Gaussian channel often
provide a lower bound on the performance of a system
with the Gaussian channel. Thus, if a particular encoder-
decoder is used with a Gaussian channel giving an error
probability Pe, then, with a non-Gaussian channel, another
encoder —decoder can be designed for which the error
probability will be less than Pe. Hence, the study of a
Gaussian channel is very important.

For a Gaussian channel,

P(X) = e 126" 1)
2na?
Hence,
H(x) =- jp(x)logp(x)d)f
But .
~logp(x) =logy2ra? + loge* /2’
From Eq. (1)
Hence,
H(x) = [ p(x)togv2no? dx
5 . X
/ - jp(x)loge‘m

This may be evaluated to yield

H(x) =logy2nea® bitsimessage ..(2)




LMMMMW}

or N =2.75 letters/message

3
HOX) =-2 B log P,
k=1
O R g e T IR
=l =log—tlog=3 oLy Lipa L
[4 M M TR T
e b 050 1. gy
+—log—+—logt+ Ljog L, 1) o1
16 216 "4 84t 16816 5183
=2.75 bits/message
logM =log 2 = | bits/letter

8 e
T NiogM M =375, =100%

priesmenstringS=00121212102101271¢
X 1221011 Find the encoding and decoding
meﬂ___ Lempe ' [RTU. 2013

An.s.Tbes{ringS=00|2l212i02101210122101I istobe
encoded. Fig. | shows the encoding process.

o] JUTUTT 10 L
ggﬂﬂllﬂllﬂllﬂﬂ g [NERERE 7 e

2{1fof i 1

F

) Fig. I : Encoding
(|.) {n the first step, 0 is encountered and added to the
dictionary. The output is 00 because is no match (index 0)

and the first non-matching character is 0. The encoder

ti)e .dicﬁonary, so the encoder adds
dictionary (a reference to the first entry plus the symbol 1)

and outputs this pair. The next steps follow the s
xbenw" until the end of the input is rzached. i
(i) The decoding process is shown in fig. 2. The decoder
receives the reference 00, with the index 0 indicating that
a pnf:omly unknown symbol (0) needs to be added to

the string 01 to the

S —

{ITC.17)

and the string 01 appended to the uncompressed data.
The decoder continues this way until all codewords have
been decoded.

ST U T T 0 T [ I [T BT T 1]
oo Tz i oz oo iz 2 i leliTT]

# Entry Phrase Output (ternary)
1 0 0 00 00)
2 1+1 0l 11 an
X 2 2 02 02
| 4 ] ] 01 (00 1)
5 I+1 21 31 (10 1)
6 5+0 210 50 (120
7 6+ 1 2101 61 20 1)
8 7+2 21012 432 212y
9 7+1 21011 71 [¢3))

Fig. 2 : Decoding

:Z.lzmlrud Huffman's code to the Jollowing set of

messages. Also find the efficiency p(x 1) = 0.49,
p(x;) = 0.14, plx;) = 0.14, pP(x,) = 0.07,
Plxg) =0.07, Plxy) = 0.04, plx,) =0.02, Plxy) =0.02,

Plxy) =001, [R.TU. 2013]
Ans.
Sym(Proba] SS | S§ ‘ SS 1 SSTss ] ss ] ss T Cogell
: S¢ < de [Len
Dolicbited -1 - f - vy | o] .VE,E -gth
0.4940.49%-0.49504

k=]

L=233 bits/symbol
9
H(X) = '.‘ZP& log, py
=1

+0.1410g,,0.14+0.14 log 0,14

+0.0710g,40.07+0.04 log,0.04 +

0.491-049] 04909 51 [0

X

|
Y 0141014401410, 140 (| 4 0.23\Fg.zg] 049100 |3
:. , : .2 101 3
5 16 1100 | 4
:, . 1101 | 4
% 10, 1o | 4
& 0 1o s
+ | 0. 1110 6
I,g ) 111 6

Fig.

Average code word length
K
L=YRL,

+0.02l0g,0.02 +0.0] 1o

L =(049 1) +(0.14 x 3y + (0,14 3)
+(0.07 % 4) +(0.07 x ) + (0,04 x 4),
+(0.02%5) +(0.02 x 6) + (0.01 x 6

=~3.32[0.49 log, 0.49

0.07 log,;0.07
0.02 log,,0.02
By00.01]

o

- | . g
| p—
/‘ 1 Za
,“-L,. ‘;
/é:‘-—-“,__‘_

| 2
&l »
= : ;
s S
. : 4
\ -
£ i .

‘i —
a [ Y
R
\ .
e

(1)

H(X) =2.3122 bits/symbol
H(X) 23122
= =099
L 233

-+ Loading efficiency = 99.2%
& R=1-q

=1-0.992

R =0.00763
Part-C

Qz:‘SExplaln Huffman coding with help of suitable

/ exgmple.

L —_———

IR.TU. 2018]

Ans. Huffman Coding Algorithm with Example
Huffman coding algorithm was invented by David

Huffman in 1952. It is an algorithm which works with

integer length codes. A Huffman tree represents Huffman

codes for the character that might appear in a text
file. Unlike to ASCII or Unicode, Huffman code uses
different number of bits to encode letters. If the number of
occurrence of any character is more, we use
fewer numbers of bits. Huffman coding is a method for
the construction of minimum redundancy codes.

Huffman tree can be achieved by using
compression technique. Data compression has lot of
advantages such as it minimizes cost, time, bandwidth,
storage space for transmitting data from one place to
another.

In regular text file each character would take up 1
byte (8 bits) i.e. there are 16 characters (including white
spaces and punctuations) which normally take up 16 bytes.
In the ASCII code there are 256 characters and this leads
to the use of 8 bits to represent each character but in any
test file we do not have to use all 256 characters. For
example, in any English language text, generally the
character ‘e’ appears more than the character ‘z’. To
achieve compression, we can often use a shorter bit string
to represent more 'frcquently occurring characters. We
do not have to represent all 256 characters, unless they
all appear in the document. The data encoding schemes
are broadly categorized in two categories.

Fixed Length Encoding Scheme

Fixed length encoding scheme compresses our data
by packing it into the minimum number of bits i.¢. needed
to represent all possible values of our da.ta. The fixed
length code can store maximum 224,000 bits data.
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Tadie : Prefix code

Sowrce

Probabikity Prefix code
symbol | of occurrence
A 03 0« Codeword
s g2s n

0« Codeword

bas fior characser m:..s and
:xrxzh a.z mbbc
=1

‘miﬁb..

([0 st 24 prove raft Ineasalic thearem "

(information Theory and Coding -
Coding efficiency : If the coding is represented by 2
map from a character ¢ to a list of bits then we will define
length (¢) be the ber of bits rep ting the character
¢ and define frequency(c) to be the frequency that
charscier ¢ as appear in the text.

The code efficiency is calculated by

: 16 ApND h‘%"h{cﬁ 2 f'w“
, the weight average of encoding lengths
ace ~-dv\2 to their frequencies.

Every Prefix code can aiso be represented as a
binary tree where cach edge is marked as ‘0" or *1” and
the leaf are marked with a character so the list of edges
10 a leaf represent the character’s code. Here is s picture
that show this idea:

.ncdc;\dm.ale..xua:tulh:hesmmacbmm
x code and so this representation provide an alierative
to the e efficient of the code in the language of rees i.e.,
B(T) =Y ccnpmedopthlc) x Srequency{c)
where depth (¢) is the depth of the leaf'c in the Tee.

1) Consider @ DMS with source probabilities
{38, 25, 20, 15,05]
(aj Determine the Shannon fano code for this
source.
(b} Determine the average length R of the
codewords.
(c) What is the efficiency 1) of the code ?

RIU. 2812}

Ans. (i) Kraft Inequality Theorem : Kraft Inequality
Theorem : A necessary and sufficient condition for the
existence of a binary code with codewords having lenghts
n <n, S, that satisfy the prefix condition is

GLCEE))

. "
El-" <t St
nl

Prooef : First we prove the sufficient condition. Consider 2
bimary tree of order (depth n =&, . This troe has 2° terminal
nodes as depicted in Fig. Let us select any code of order
n, &s the first codeword ¢,. Since no codeword is the prefix
of any other codeword (the prefix condition), the choice
eliminates 2%~ ™ terminal codes. This process continues
until the fast codeword is assigned at the terminal noden=mn, .
Consider the pode of order j < L. The fraction of number
of terminal nndes eliminated i<

§'2~n,<§12"’ <1 @

Thus, we have been able to construct a prefix code that is
embedded in the full tree of n, nodes. The nodes that are
climinated are depicted by the dotted arrow lines leading
on to them in fig.

N4

— e

Fig : A Minary tree of ovder s,
We now prove the pecessary condition. We cbserve that
mﬁ:ccode!meofﬂuotdcrnﬁn,_.lhenmbtufmm]
nodes eliminated from the total number of 2° terminsl nodes is

L
gz’* gl L3
L
This leads to 2.2 <1 B

We can easily extend this proof for prefix codes
over an alphabet of size M. For the proof we will have 1o
consider an array tree instead of a binary tree. The
inequality in this case would become

L
M sy (5}
=l
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Ans. (if) (a) By Shannon Fano Code
P{x) | Code

b

035|0 0 2

025(0 1 2

020101 0 2

4 0ISjt 1 o3
00541 1 1|3

() R=Xp(x)n
’0‘3532+0‘2512+0.20k2+0vl5 X3+005x3
=0.70 +0.50 + 0.40 + 0.45 + 0.15 =220
H(X)

(c) n “T

o)

. - 1
H(xX )‘iﬂ(")'bl[m]- ~[0.35 log (0.35)
+ 0.25 log (0.25) + 0.20 log (0.20) + 0.15 log (0.15)
+0.05 fog (0.05))
=+[0.15+0.15+0.13 + 0.12 + 0.06] = 2.02

202 °
=——=021%
RTT

&

Q..I]/(n) A discrete memory less source has JSive
symbois X1, X2, X3, X4 and X5 with probabilities
0.4, 0.19, 0.16, 0.15 and 0.1 respectively
artached to every symbol. Construct Shannon-
Fano code for the source and calculate the code
efficiency.
(8) A channel has the following channel matrix

EER R

(Y Draw the channel diagram

@) If the source has equally likely outputs,
compare the probabilities associated with the
channel output for p = 0.4 and calculate

H(x), H(y) and ll(-ﬂ- [R.T.U. 2011, 2010]

{Message| Probability | 1{11]111 Code word| Number of
. of message for bits per

message | message ie.

b Ny

X 0.4 0 0 1

x; 0.19 11010 100 3

X, 0.16 1101] 101 3

Xy 0.15 1{1]0 110 3

Xy 0.1 1{1 FI— 111 B 3

~—{ B.Tech. (V Sem.) C.8. Solved Papers
Ans. (8)  Table : To obtain ShannomFano code

The entropy (H) is given as,
M f 1

H= Yatos, L)

kel Pr )

Here M = 5 and putting the values of probabilities in
above equation,

(1 1
=04log,| — |+0. 2 -—}
H og‘L04]+ l9log.[0|q
(1) | ¢
| = +0.151 ,[——]vo‘ "
L0.16) B UNTY A Ln J
= 2.1497 bits/message
The average number of bits per message N is
L
N= ZP&”A
kal

Here p, is the probability of k" message and », are
number of bits assigned to it. Putting the values in above

equation.
N=04(1)+0.193)+0.16(3)+ 0.15(3) + 0.1(3)
=22

+0.16log,

The code efficiency is given by equaiion i e.
Code efficiency n=
2.14

S zix

=0.977

Ans. (b) Given .
h Bh

p(1]=x|[l“p p 0 ]
x x;10 p l-p

(i) Channel Diagram

I-p
X; > =Y
Y2
p
X S Y3
I-p

(Information Theory and Coding =

(ii) Given that source has equal likely output. Hence

P) = plxy) = 3

then the output probabilities are

r(n) i 0
P P
r(y;) =[P("|)P(“}ﬂ!o B i—p]
P(."\)
but given thatp = 0.4
therefore
[P()] py |]r|-0.4 04 0 ]
[”(-’1‘)! 12 200 04 104
()]
sl l l'hro.s 04 0
L2 2J{o o4 06
}Vp()‘)] [rﬂ.}i
f’()':]‘ = !0""
l "l."l)_' 1.0 3]
Thus p(3)=03
plyy)=04
piy)=03
ol
H(x) =  log, | —
@) SR thpl)
H(x)= p 10g1[i]* m log, [L]
2 A Py

{ITC38)

H(x) = }m,u).zlm,(z)
H(x) = 1 bit/message

) I
(b) H(y) = 'Z.;Pl log, (;:J

or=wou(3) (2 )onon(3)
HQ) = 0.310;(-0—%)-0 0.41::;(6-!«‘-]1-0.310;(6‘3]

" 0313+0.159
o) = ==

H(y) = 1.56 bit/message
(c) We know that

H[%] = H(xy)-H(x)
o o(2)=[o° G4 o)
H(f)go.alog;{E%J-fu,4wgz(6%)+o.4log,(a%

- +0.6iog,(

OI_
S A

L]

») _ 0266+0318
H(:)' 03010 Dit/message

2

I~

) = 1.94 bimessage
oon
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~ Previous YEARS QUESTIONS

ParT-A

Q.4 Define channel data rate. [R.T.U. 2016]

[R.T.U. 2016)

Define code word.

Ans. The channel encoder separates or segments the
incoming bit stream (the output of the source encoder)
into equal length blocks of L binary digits and maps each
L-bit message block into an N-bit code word where N> L
and the extra N — L check bits provide the required error
protecti .. There are M = 2" message and thus 2" code
words of length N bits. The channel decoder maps the
received N —bit word to the most likely code word and
inversely maps the N-bit code word to the corresponding

L-bit message.
Code Word : The encoded block of N bits is called a
code word. It contains message bits and redundant bits.

Q.2 Define block length. [R.T.U. 2016]

Ans. Block Length : The number of bits N after coding
is called the block length of the code.

Q.3 Define code rate. [R.T.U. 2016}

Ans. Code Rate: The ratio of message bits (K) and the
encoder output bits (N) is called code rate. Code rate is
defined by ‘r’i.e.,

K
e
N

We findthat 0 <r< 1.

Ans. Channel Data Rate : It is the bit rate at the output
of encoder. If the bit rate at the input of encoder is R,

then channel data rate will be,
Channel data rate

Q.5 What are content errors?

Ans. Content Errors : The content errors are nothing
but errors in the contents of a message i.e., a 0 may be

received as | or vice-versa.

i
1
+
I ParT-B
]
= —
L (!)4.6,!f(0nsider a (6, 3) linear block code whose

generator matrix is given by

(1.0 0 1 0 1]
010110

(0 010 1 1]

(a) Find the parity check matrix

(b) Find the minimum distance of the code.

(c) Draw the encoder ands yndrome computation

circuit. [R.T.U. 2017}

m

e gt e S TN S5 .
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Ans.(a)

Generator Matrix = |
00

Standard form G = [I, | A]
Parity Check Matrix = [-AT|I,_,]

1L 8510 8
=01 1010
101 691

(b) To find minimum distance, we use the property
that the minimum distance of a binary linear codes is equal
to the smallest number of columns of the parity check
matrix that sums up to zero.

Cleary all columns of H are non-zero and they are
all distinct

So,d2,3
Moreover, we can conclude that d = 3
by adding first 3 columns of H :-

17 [1] Jol [o
0+l+l=0
1/ {o] |1 0

Hence, minimum distance of code is 3.
(c) Encoder circuit —

@Differantt’ale between systematic and non-

systematic codes. Give example of each.
/R.T.U. 2017]

GiED)

Ans. In coding theory, a systematic code is any error-

correcting code in which the input data is embedded in
the encoded output. Conversely, in a non-systematic code
the output does not contain the input symbols.

Systematic codes have the advantage that the parity

data can simply be appended to the source block, and
receivers do not need to recover the original source
symbols if received correctly - this is useful for example
if error-correction coding is combined with a hash function
for quickly determining the correctness of the received -
source symbols, or in cases where errors occur in erasures
and a received symbol is thus always correct. Furthermore,
for engineering purposes such as synchronization and
monitoring, it is desirable to get reasonable good estimates
of the received source symbols without going through the
lengthy decoding process which may be carried out at a
remote §ite at a later time.

Examples:

*  Checksums and hash functions, combinedwith
the input data, can be viewed as systematic
error-detecting codes.

* Linear codes are usually implemented as
systematic error-correcting codes (e.g., Reed-
Solomon codes in CDs).

*  Convolutional codes are implemented as either
systematic or non-systematic codes. Non-
systematic convolutional codes can provide
better performance under maximum-likelihood
(Viterbi) decoding.

Q.8 Given a (6,3) linear block code with the followmg
parity check matrix H:

1 01100
H={0 1 10 1 0
1 711001

(i) Find the generator matrix G.
(ii) Find the code word for data bit 110.

[R.T.U. 2016}

Ans. (i) To obtain the generator matrix:

H =[P" :Iq]w

01
1

1
H=|0
1 1

c o -
o - ©

e ———C————————




1o 1)
ey
PE- Y 1
(1 0 1]
Hence p ={0 1 |
RERENY
The generator matrix is given as
G =l Bg],

¥ 0 @10
G=|010:0 11

0 01 111
(ii) To obtain the codeword for data bit 110 ;

M =[110]
This is (6,3) code. The three check bits can be
obtained by equation :
1 01
C =ppo (110J0 1 1
| t o
=[l®0$00®1€801€91®0}
=[110]
Code vector,

X =(ml, mz, m], Cl,%,(.'.z):(l]o 1].0)
Code word = (110 110)

{ @ Dcﬁne;r;tinlmum distanced d,,;, of Hamming

code: Differentiate between Hamming distance
and minimum distance. How minimum distance
is telated to error detection capability?

[R.T.U. 2016]

— — —
o ——— s e

Ans. Himming Distance : The hamming distance
between the two code vectors is equal to the number of
elements in which they differ. For example, let X =(101)
and Y = (110). The two code vectors differ in second anc%
third bits. Therefore hamming distance between X and Y

is ‘two’. Hamming distance is denoted as d(X,Y) or simply
‘d’. i.e.

dX,Y)=d=2

={B.Tech. (V Sem.) C.8. Soived Papers )
Thus we observe from Fig. that the hamming
distance between (100) and (011) is maximum i.¢. 3. This
is indicated by the vector diagram also.

Minimum Distance (d

min) ¢ It is the smallest
hamming distance between the valid code vectors.

Error detection is possible if the received vector is
not equal to some other code vector. This shows that the
transmission errors in the

received code vector should be
less than minimum distance drin- The table lists some of
the requirements of error control capability of the code.
Table : Error control capabilities
Name of crrors [
detected/corrected
Detect upto ‘s’ errors per word

Sr. ‘

Distance
No.
1

requirement
| 2

dmjnZS+1 “
Correct upto ‘t’ errors per word dpp 22t +1 |
3 |Correct upto ‘t’ errors and detect Qmn 2 t+5+ |
S > terrors per word

For the (n k) block code the minimum distance is
given as,

dpin SN=k+ 1

Fig. Code vectors representing 3-bit code words

———

Q.10 Given a (7,4) block code generated by (G) below :
Y o MMoeoo11

(i) Find all the code words of the code.
(i) Find H, parity check matrix of the code.

[R.TU. 2016

R
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Ans. (i) Codeword = DG Ans. n=7
| Message (D) Codeword k=4
g g 0jolojofo]JoTJoJoTo q=n-k=3
} oo ? (I) g g ? é (') : ? Error Pattern for Single Bit Error
[0 o1 Jolol T 1T o l Bitin error | Bits of error (E) | (non-zero bit)
, i 1JoJoJoTJolo 0
[{o Ljojftioft]olt o1 39 olol1(olo]0 0
i011001110|10 A 0jojof1]o]0 0
LOI'“'“'"“‘)” E ojofofofi1]o 0
(1 JoJo ojJiJololo 11T 6" 0loJofolo][1 0
L[IOPQ-]-I]' 0ofo]1[olol A ojofo]olo]o ]
ERAABREFEEEAERN DD
BEE IR NG AR Syndrom Calculation
L1l foJo 11 0jojolT1]o S = EHT
"Illlgo%llllljlﬂil{lﬁ_o i #
(A Jrtirjolr i laJoloTo I
lfljllill[ijllllﬂ ('H'?
: :
p Fii L
(i) G = 1 00
001 001 1 0 1 o
0001 11 0 0 1 1]
- []J ;P] Syndrom for 1* Bit Error
= EYT
11 it ]
B 111
P = 1 1 0
) I
1 01 1
P §=[1000000][ 1 0 1
11 0 1 1 00
PT ={1 0 1 1 010
1110 [0 1 1]
. =[PT-1 ] | S=[101] N
S l.e. syndrom vector for 1% bit in error.
1 L0 4 3.0.4 Similary syndrom table can be drawn as
H=/1 01 1 01 0 SNo.|  Erorr Vector(e) | Syndrom (s) Error
I'1 1 00 0 1 . [00000000| 000 |er™owofH'
- 2. /10000000 111 [2%0owofHT
.11 The Parity check matrix of a (7, 4) Hamming 3101000000 110 [«3%0owofHT
Q . Y
code is as under 4. [00100000| 011 |«d4®owof H
1101100 5. 100010000 101 |esProwof T
H";wg;: [ 6. /00000100| 100 |e6"owofH
1011 th T
. . . 10 fH
Calculate the syndrom vector for single bit errors. 7. |00000010] 0 "'7" — =
[RTU.2012) | | 8 |[00000001| 011 |«TmowofH
m
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: ' There is a limitation to parity schemes. A parity bit
B is only guaranteed to detect an odd number of b}t errors.
: If an even number of bits have errors, the parity bllt records
the correct number of ones, even though the data is corrupt.
Consider the same example as before with an even number

of corrupted bits: '
I Type of bit Failed transmission scenario
_parity error
Even parity error | Alice wants to transmit: 1001
in two corrupted | Alice computes even parity
bits value: 1 070" 1=0
Alice sends: 10010
. TRANSMISSION ERROR...

Bob receives: 11011

Bob computes overall parity:
P2 L8082 1=0

Bob reports correct transmission
though actually incorrect.

Bob observes even parity, as expected, thereby
failing to catch the two bit errors.

| comm——
‘,@- PXplain the type inezrgfs and classification of
) codes. e [R-T.U. 2018, 2017, 2012, 2010]
—————
Awms. Type of errors
" The errors intorduced in the transmitted data during
their transmission may be categorized as under

(i) Content errors —

(i) Flow integrity errors

Content errors:

The content errors are nothing but errors in the
c?ntents of a message i.e., a 0 may be received as 1 or
vice-versa.

Flow integrity errors:

Flow integrity errors meaning missing blocks of data.
lt is possible that a data block may be lost in the between
as it has been delivered to a wrong destination,

Types of Errors

Thermal . Errors
ik /Gamsna,n\ Nmsc‘b —
Random Errors Burst Errors
The errors in a digital communication system are
caused by noise in the communication channel (Gaussian
noise introduce in analog part of common channel).
. Random errors due to white Gaussian noise are
introduced. Gaussian noise had been our chief concern in
designing and evaluating modulatots and demodulators.
Sources of Gaussian are :

(a) Thermal Noise : Due to vibration of individual
moleculés about their position of equilibrium in a crystal
lattice, the conduction electron of metals wander randomly
throughout the volume of metal, similarly 'm_olecul_e of an
enclosed gas are in constant motion colhdmg_ with one
another and colliding also with the walls of container. TII'IBSC
agitations of molecules are called thermal agitations
because they increase with temperature.

(b) Shot Noise : Result from a phenomenon

associated with flow of current across semiconductor
junctions. The charge carriers, electrons or holes enter
the junction region from one side, drift or are accumulated
at the junction and are collected on other side. The average
junction current determines the average interval that elapses
between time when two successive carriers enter the
junction. The exact interval that elapses is subject to random
fluctuations. This randomness give rise to shot noise. As
we know that power spectral density of Gaussian noise at
receiver input is white Gaussian noise. The transmission
errors introduced during a particular interval by white
Gaussian noise does not affect the performance of system
during subsequent signalling interval. '

(c¢) Burst Errors : Which is due to impulse noise
by long quite intervals followed by high amplitude noise
burst. This type of noise occurs from many natural and
man-made causes such as lightning and switching
transients. When such noise occurs, it affects more than
one symbol or bit and there is usually a dependence of
errors in successive transmitted symbols. :

Error control schemes for dealing with random errors
are random error correcting codes and coding scheme
designed to correct burst errors are burst over correcting
codes.

Shot Noise : Shot noise appears in active devices
due to the random behaviour of charge carriers (electrons
and holes). In electron tubes, shot noise is generated due
to tt.le random emission of electrons from cathodes; in
sc_emlcpnductor devices, it is caused due to the random
diffusion of minority carriers or random generation and

recombination of electron-hole pair.
© 2

0

t—
Fig.
. Current in electron devices (tubes or solid state) flows
in the form of discrete pulses, every time a charge carrier

moves from one point to the other (e.g., cathode to plate).
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- Fhe variation of powér density spectrum with

is shown in Fig.
frequency is g S(@)

2KTG

KTG

-1 0.1 0 0.1 [
Fig. Power Density Spectrum of the Resistor Noise Current
It is obvious from the figure that the spectrum may

be considered to be flat for © < 1. The power density
(o8

spectrum S(w) for this range of frequency is nearly
constant and is given by ‘

S(®)=2kTG .(2)

The value of a is of the order of 10" and hence the

frequency correspondingto £ < 0.1 is of order of 10'® Hz.
o

Therefore, the frequency independent expression of S,(®)
given by eq. (2) holds up to a frequency range of 10'*Hz.
This range covers almost all the practical applications in
communication systems. Hence, for all practical purposes,
the power density spectrum S,(®) is considered to be
independent of frequency.

lassification of codes :

The codes are basically classified as under:

(i) Errors detecting codes¥ The error detecting
codes are capable of may detecting the errors. They
cannot connect errors.

(ii) Error correcting codes -

(1) Block godes (2) Convglution codes

The error correcting codes are capable of detecting
as well as correcting the errors. These codes can be
classified intorblock codes and convolution codes or linear
and non-linear codes.

For error- free transmission, following codes are used .
(A) Block Codes
(B) Burst and Random Error Correcting Codes
(C) Interleaving
(A) Block Codes
(i) For Error Correction
1. We compare the performance of system using
block codes for error correction with systems
(n,k) using no error control coding.
2. Two measures of performance are :
(a) Problem of incorrectly decoding a message
bit.
(b) Problem of incorrectly decoding a block of
message digits.

m

3. We will do the comparison on the condition that
rate of information transmission is same for coded
and uncoded systems and both systems are
operating with average signal power and noise
power spectral density. )

4. Coded or uncoded a block of say k message bits
must be transmitted in duration of time.

where r, = message bit rate
1 T
5. o fy=—=2
Ty & ) .
if system uses an (n, k) block code, then bit rate
going into channel

n
=% (E] or r,>T,

6. Now
r, = Message bit rate.
r, = Channel bit rate. -
q. = Channel bit error probability for coded

system. -
q, = Channel bit error probability for uncoded

system.

pu = Probability of incorrectly decoding a
message bit in uncoded system. .
P, = Probability of incorrectly decoding a
message bit in coded system.

pu, =Probability of incorrectly decoding a word
of message bits in uncoded system.

P¢. = Probability of incorrrectly decoding a word

if message bits in coded system.
7. Now in uncoded case

Py =4, and probability that word of k message
bit incorrectly received.

Pi.= 1 —P(all k message bits are correctly
received)

=1-(1-q,) k when kq, <1
 =Pwkq, -
since transmission errors are assumed to be
independent.

8. ‘Incoded system, a word of k message digits will
be incorrectly decoded when more than t errors
occur in a n-bit codeword since block code is
assumed to be able to correct upto t errors.

Thus

Py, = P(t+ 1 or more errors in a codeword)

e —————————————————————————
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abilityofoomctingthe oodoomnesatthe receiving
end.

3. They provide accurate transmission of message
from one place to other place.

4. They provide good efficiency of message sending,
5. They help in sending correct message to the
recerver. ¢

An another classification of codes are as follows:
Let us consider the following fuble where a source of
size 4 has enceted in binary codes symbo) 0 and 1.

Instantaneous codes:

A uniquelly decodable code is called an instantaneous
code if the end of any codeward is recognizable without
examining. Subsequent code symbols. Prefix free codes
are sometimes known as instantaneous codes.

Optimal codes :

A code is said to be optinal if it is instantaneous and
has minimum average.L for a given source with a given

probability assignment for the source symbol.

Q.lz .@‘3 5 hat is cading efficiency ? Show that the ,‘*
) coding efficiency is maximum when P(0) =

P (1) [RTU. 2018, Dec. 2013/
@ Design (n, k) hamming code with a
———minimum distance of d,, = 3 and message

length of 4 bits. — ~fRT.U. Dec. 2013/

alphabet. There messsage [m, m, m, ....
probabilities [P(m,), P(m,) ..... P(my)].

Ans.(a) Coding eff‘c:ency The code efficiency is
defined as the ratio of message bits to the number of
transimitted bits per blocks.

Let M be the number of symbols in an encoding
m,,] with the

Let n; be the number of symbols in the i* message

The avcmge length of the message or the average length
per code word is than given by.

1= Z".' P(n;) letters/message ... (1)

[ should be minimum to have an efficient transmission

coding efficiency, then can be defined as

Tmin
n=——
T

Prove of coding efficiency is maximum when

P(0) = P(1)

Let H(x) be the entropy of the source in bits/message

also let log m be the maximum average information
associated with each letter in bits/letter.

-

~ "““”{% 5]

. GeED)
Hence, the relation -
He)

logm'

essage

. y m ;
having a unit Bits/letter gr letter/message, gives

()

the minimum average no. of letters per messagc
gm

tmln

Hence the coding efficiency is

_Tme __HO)

L rlogm

We know that H(x) will be maximum when symbols
are equiproble.

And the coding efficiency will be maximum when
H(x) will be maximum. S we can conclude that coding:
efficiency will be maximum when

P(0) = P(1)
Let us see an example to prove it
[M]=[m, m,]
1

I(xy) _ Hx)
C log, M

Efficiency n=

llo l-i--l-ld o
2 g!] 2 gz]

- 2 2 =(1 =100%
logzz 1)

Ans.(b)
code word length n = (2%-1) —»

q=(n-K)

+— message bit—ste— parity bits —
Code word structure of hamming code

here since message length is given as 4

4=29-g-1

q=3

here, n = 7 = length of code word is 7.

Number of message bits K = 4 (given)

Number of parity bits : (n-K)=3=q

Minimum distanced , =3

K=2"-q-1

e R e G

3. Code rate of code efficiency =

= | =
e




(o = (\ \ )
Ls=(110)

=(1°!J

v

11

110
1 01
l 011
Find out the error vector and suppose that the
received vector R is 1001001.

[R.TU. 2013)
— = —— ——
Ans.
&.P: 1 H ‘[PT”n‘k]m-km
Il 110} 100
H=|1 1011 010
1 9151 4@ 0 A
\-—T-.-d h.-.-_-r—l
3
Step:2 WehaveK=4
n=7

. 2%=2* codewords for 2* messages (0000)...(1111)
Step : 3 Choose a specific value of D from the 16
combinations for example 1011.

C =DG
=1011001
Step : 4 Calculate syndrome
S frrroloof
Tl K 11010
aorioon|, o 11001
11 1]
1 10
1 0 1
=(1011001)j0 1 1
1 00
011
0 0 1]

Step:5 IfR=1001001isgiven find S =RH"
B
1 0

1 1
=(1001001){ 0

1

0

]
0
1
0
1
0

— o o -

10

=101

{(B.Tech. (V S8em.) C.8. Solved Papers )

Step : 6 Compare value of S by H'. Now 101 is equal to

third row of H' .". third bit is in error .. the transmitted
word

C=1011001
Error vector E= R - C

E=0010000

Q.16 Consider (7, 4) linear code whose generator
matrix is

(a) Find all the code vectors of this code.
(b) Find the parity check matrix for this code.
(c) Find the minimum weight of this code.
(d) Prove equation CHT = 0.
[R. T. U. 2013, 2011; Raj. Univ. 2006, 2002

Ans. Given (7, 4) linear code
1 00 01 0 1
01 0 01t 11
G=|0 0 1 01 1 0
000 10 1 1
(@) HereK=4,n=7
K = number of bits per message.

There are 16 possible combinations of 4-bits rangmg

from 0000 - 1111. For each combination, the code word is
formed-by

C=DG
- G G
100 chh 01
D (01 0o}t 11
C={1111]{0 0 1-0ft 1 0
000 10 11

C=11111111

Similarly, for other combinations, codewords can be
formed.

(b) Parity check matrix
H=[P_ ]
1110100
g=|01 11010
1101001
(¢) Minimum weight .
First construct all codewords by C.= DG, these are
shown in given table.
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/ 101 is equal to
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(Information Theory and Coding) iITC.41 :
Table N L4 et 00 -
Weight Ans.H=1 1 0 1 : 0 1 0 )]
ke g 000 0 1011 :001 e
0001 011 3 H={p";[}} w2}
0010 110 3 Comparing matrix (1) & (2) «
s 1o 1 4 110
0100 111 4 P,:[Jlol
0101 100 - 3 [10; X o
0110 001 3 Cli
0111 010 4 malp .
1000 101 3 v 11 i
oot 011 4 |1 1ro
1011 000 3 BRI v
1100 010 3 011,
1101 001 4 (a) Generator Matrix (G)
1110 100 4 Rt L 2
1111 111 7 but k=4.q=7,n=7
(d) Equation-CHT =g G=1l,: Py, s)inr -
ChooseanyC=00101 ] ) [I 000 :1 11
101 01 00 :110
G =
l‘ l' 5 s0 Io 010:101 [
00 0 | 01 1
HT=|0 1 | T_ L .1
| 0 o NeWCHT=[0010 111] (b) Code Word D G
01 0 C = MP 1o
001 (C; C,C5), =M, M,, M,, M,] ¥ 5§ c
I@-1 G=MEM,®M, 61 1
1 1 1 .
i3 C,=M,®M,®M, c
:) 1= [000] Hence proved. G=MeM M,
0 ? g Code table
50 1 5.3.2/5-20. B
(¢) Minimum distance: It is equal to minimum weight of
. . : any non-zero cod 2 fi
Q.17 e parity check matrix of a particular (7, 4) Hy no ‘Am “’? e(::]“wr So from the table ‘
. e 5 = [w (x)]_
; linear block code is given by S i
1110100] |min = 3|
H=|1101 010, (d) Error Detection & Correction
1011001 | d. 25+l )
(a) Find the generator matrix G . 32541
(8) List all the code vectors. 5§52
(c) What is the minimum distance between the two errors will be detected
code vectors ? g 22 +1
(d) How many errors can be detected and how > 2t +1
many can be corrected ? [RTU. 2012/ 1<l
only one error will be corrected.
Q0Q
e T —




¥

*

~{B.Tech. (v Sem] C.S. Solved Fapers)

CycLic CoDE 4

REVIO YEarRs QUESTIONS

The intersection of cyclic codes is cyclic. Find
X the generator polymomial of C, » C,.
[RTU. 2018

Q.3 How RS code can be organized? Explain in short.

Ans. RS code is organized on the basis of groups bits.

Such groups of bits are referred to as symbols.

Q.4 Write one disadvantage of cyclic codes.

Ans. The generator polynomial of C, N C, is
&(x) = lem(g, (), £.(x).

Every codeword in the intersection of two cyclic
codes is divisible by both generator polynomials and
therefore by their least common multiple.

Conversely, every multiple of the feast common
multiple belongs to both codes, hence to their intérsection
When g (x) and g (x) are relatively prime. their least
common multiple is their product. In this case, the gener~tor
polynomial of the intersection of two cyclic codes is

g, (x)g.(x).

Ans. The error detection in cyclic codes is simpler but
error correction is little complicated since the combinational

logic circuits in error detector are complex

Q.5 Define parity-check polynomial.

Ans. Parity-Check Polynomial : It is 2 polynomial that

can be found as the remainder polynon

/Q'.to\ What do you mean by cyclic codes.
S’

Following polymomial f{x) and g(x) are
defined over GF(3).
fix) =2 +x+x+2x
glx) =1 +20 + 2x' + <
Caiculate addition and multiplication of the
above two polynomials. JR.TU. 2013/
w
Ans fX)+) =2+ D+x+(1 + 2+ 2+ 2 +x7=
x+x+x*
Ax)gx)=(2+x+x*+ (I + 2x3+ 2x*+ xX%)
=2+x+ (1 #2227+ 27 +(2+ 2422
+ @+ H( F2+ DX X220+ 2XF
=2+x+(l+Ip+27+(2+2+ 1)x*
+(2+2)x’+(l+2+l)x°*x’+x’+21°
=2+x 4+ AR F 2 H AN XTI

Ans. Cyclic Codes: It has the property that a cyclic shift
of one codeword of the code forn

1s another codeword

Part-B

Q.7 Design a (4, 2) LBC :
(i) Find the generator mairix for code vector sel
(ii) Find the parity clieck matrix
iii) Make an enconding cki.
(iv) Draw the encoding ckt.
(v) Draw the syndrome calculation ckt.
(RT.U. 2018

—{(ITC43)

°
(information Theory and Codis g e
Ans.(i) Generator matrix of a (4, 2)
1011
1101
(@) 0100
1001
0011
(i)
Inputs Qutputs |
Dl Dg D'| DB QI
{0 0 0 1 0 0
0 0 1 Q 0 1
0 1 0 0 1 0
1 0 0 0 | :
0 0 0 0 x x
@iv)
1, —y
p—
n Ao
7
EO
0
GS
Fig.
(¥)
- ‘ L
D :"‘ﬂ‘l:-D—'
- S—— T T~
an —f s L'FC\_‘
= p . O
o g
Fig.
L(E.Sj: Write short notes on Cyclic codes. [RT.U. 2017]
= OR S

Whar are the cyclic codes? Write the advantages
and disadvantages of cyclic codes. [RT.U.2016]
Ans. Cyclic Codes : Cyclic code has the property that a
cyclic shift of one codeword of the code forms another
codeword

Meaning of cyclic shift is explained from figure i.e.
1 bit word instead of being written out horizontally is written
around a circle. Starting at any point A the 7-bit word

at some other arbitrary point say B we would read 0111010
Thzmvwdsmrelmdmhrhnonehderhd&pn
other by cyclic shift. There are seven possible starting
plans as shown in fig. Order in which the words are
generated depends on the direction, clockwise or
wmmmlockwixofmeshiﬂ.bmﬂnmﬁmhufﬂe
resultant collection of words is not affected by the shift
direction. !

A procedure for genéitin.g an (n, k) cyclic code is
the following :
The bits of the uncoded word A = (AgA, .. A, _)are
written as the polynomial.
AN = A, BAXBAX 8.8 A, XY D)
The bits of the coded word T = [T, T, .. T} ere
written as the coefTicients of the polynomiatl.
TxX)= T, 8T x8T X' @ 8T _ X --(2)
We next form the “generating” polynomial g{(x)
of degreer=n—k.
=legxagro.ogxXax. .0
and we determine the values of the coefficient
£, & - &, from the condition that g(x) be a factor of the
ynomial

fl=x"e 1 e d)
where n is the number of bits in the codeword.
Finally, when g{x) is determined, T{x) is found from the
-equstion-
T(x) = g(x) A{x) .45
As an example of the application of this
procedure, let us generate a (7, 4) code since n =7
fix)=x @ | - {6
It can be verified that factors of f{x) are
f,00 = 2{x) . 4,(x) . 1.!()() <
=lexv(laxex)(lexax) (N
To generate acode withn=7 bits, T(x) in equation
(2) must be a polynomial of degreen—1=6.
Advantages and Disadvantages of Cyclic Codes
As we have seen that cyclic codes are the subclass
of linear block codes, they have some advantages over
noncyclic block codes ss given below-

encountered by a clockwise rotation is 1101001, starting
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(i) RS code is able to correct err

ors in t symbols

;
(==
. 2
k
(iv) Code Rate == R,

(v) and no. of correctable bits B= :

(vi) RS code is not effective code for correcting
Random errors.

It can correct only half parity symbols making a total
codeword length of n = k +r. So it gives trade off in error
correcting capacity than other codes as the code rate does
not depend on the parity symbols. So independency on the
parity symbol of the code rate gives another trade off of
RS code.

Q.11 Pesign an encoder for (7, 4) BCC generated by
g(x) =1 + x + x' and verify its operation using
[R.T.U. 2013]

message vector 0101.

Ans. Here g, =1
g, = 1 — closed path
g, =0 — open path

Serial quotent
— Gate
feed
back
before
shift

a—ya_ Parity
Message ol &
1\""’1” %L inputB{x)
SR R
% ‘3 x Hﬂ *2‘ Fig.
3 Equationfor r =¢ +d
o= ry +d
n = "10
lnpl‘l; bit Register Inputs Register Outputs
I n n £
- 0. -0 0 0 0 0
1 ] I Oshift | I 1 0
0 0 o0 | shift 2 0 0 1
1 0 0 1 shift 3 0 0 |
0 1 | Oshift4 1 1 0

The code vector for (0101)is (1100101).

(i7eaD)
il

; 5) li 1 has a generator

12 A7(15, 5) linear cyclic code

% polynomial g(x) —l+x++x+xX+x+x’
k diagram of an encoder and

(i)Draw bloc
ator for this code.

syndrome calctl .

(i) Find the code polynomial for the message

polynomial. '

D(x) =1 +x*+x'(ina systematic - form).
[R.T.U. 2013/

Ans. Given (15, 5) LBC
gx) =1 +x++x+ x5+ x* +x'°

(i) Block Diagram of Encoder

Heren-k=10
. no of shift register is = 10 fromr,—r_ to calculate

10
Check bits

gi=1 g2=1 g3=0 g4=1
8=0 87=0 gg=1 g9=0 gp=I
According to these valves encoder is designed.

(G

Here g, =1 gs=1

Serial quotent

Remnainder

Fig. 1

Syndrome Calculator

Fig. 2

(ii) Code Polynomial forM R )
systematic form) essage Poly D(x) =1 + x? + x* (in

x"*D(x)
-__g ) [ts remainder gives the values of parity
check poly.

LG
8(x)

x4+ x? %4

T4x +x2

-
+ X 4x5 4 x8 510

—-VM_
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l+x+x

xYai

14

10 12

X +X " +X
+xt ot axt +x" .

x! +x*

12

+xtext e x? ax g n

Xt et et x®+x"

5 10

2
Tax+x2+x + 0 +xP +x

x)=1+x+x2+x% +x°

v =1110001001  10101)
b s ——
X * D =15

Q.13 Let C be a (7, 4) cyclie code with g (x) =1 +x +

x’. Find the generator matrix G for C and also
find the codeword for d = (1010) ? [RTU. 2012/

Ans. Sincen=7,k=4, we have
g(x)=1+x+x'« 1101000
xg(x)=x+x?+x* « 0110100
xg(x)=x*+x*+x*«< 0011010
X’ g(x) =x>+x*+ x°< 0001101

Then we have

[1 1 01000
G0 ! 10100
“loo 11010 i)
{0001 1 0 1
For d=[1010]

P 1 01000
c=dG=[1010]!g :J : ? (: ? g =[1110010]
looo1 10

1

So code word is 1110010.

ParT-C

Q.I:F What do you umlersrafld. by parity — check
. polynomial? Explain it in correspondence

“with generator polynomial.
(b) The generator polynomial of a (6,3) cyclic
code is g(x) = 1 +x°. Find all the code words
of the code. [R.T.U. 2016]
e
Ans.(a) Parity-Check Polynomial : The parity-check
polynomial is a polynomial that can be found as the

remainder polynomial.

st

—{ B.Tech. (V Sem.) C.S. Solved Papers )

‘ When the message polynomial, shifted by (n — k)
times, is divided by the generator polynomial g(x).

For an (n, k) cyclic code, the generator g(x) must
divide (x" - 1) and the quotient h(x) = (x" = 1) /g(x) is
called the parity-check polynomial. For any codeword ¢(x),
it follows that h(x) satisfies

h(x) c(x) mod x"-1=0

Since h(x) is given by dividing x" - 1 by g(x), one
can prove this statement by observing that c(x) = m(x)
g(x) for some m(x).

Explaination :
h(x) c(x) = m(x) g(x) h(x) =m(x) (x" - 1).

Since x" - 1 divides h(x) ¢(x), the remainder is zero,

The parity-check polynomial h(x) = hy + hyx+h,x?
+... h,x*of an (n, k) code has cyclic parity-check matrix
of the form

b hyy - hg 0 0 0
o hy by - By -0 0
H= : : e b TR G
0 0 0 h - h hy

In this case, one can use the fact that g(x)h(x) =x"- 1
to verify that GH' = 0.
Ans.(b) (6,3) cyclic code = no. of message bits =3
No. of check bits=6-3=3

g(x) = 1+x?
Message| D(x) V(x) \'%
0 0 1 |0 0 000000
00 1 |1 | +x° 101000
01 0 |x x+x’ 011000
01 1 [1+x 1+ x+x +x° 111100
1 00 [¥ X t+x 001010
101 [1+x T+ X2+ +x 100010
=1+x*
110 [x+x X+X+X X 011110
T 1 1 N+x+[1+x+x+x +x +x' (110110
=l+x+x+x' e

D(x) = (D)1 + (D))x + (D,)x*
Code polynomial,

V(x) = D(x) g(x)

V(x) = (Vo) +(V}) X+ (VX

+ (V% + (Vx* + (Vox®
V=[VoV, Va V3V Vil

at is Galois field? Explain properties of Galois

g Ids. ﬂ [R.T.U. 2013]
\/3{ OR

Explain the construction of Galois jField (GF)
along with its basic properties. [R.T.U. 2016]

Ans. Galc
of elemeni
finite field
the neutra
additive ar
the second
1. The ope:

@
0
1

Thit
used one i1
is a field,
modulopn

Sot
modulopa

" Thiy
GF(p). Th

. positive in

into a field
field GF(p

Fini
justify the
Field cha
elements (
neutral ele

1
S1=13
i=l i=l
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(Information Theory and Coding)

Ans. Galois Field : A field can have a finite number m
of elements in A. In this case, the field is called m degree
finite field. The minimum number of elements is 2, namely
the neutral elements of the two operations, so with the
additive and multiplicative notations: 0 and 1.In this case,
the second group contains a single element, the unit element
1. The operation tables for both elements are inZ,;:

® 0 1] ® 0 1
0 0 1 0 0 0
1 ] 0 L1 0 ]

This is the binary field, noted with GF(2), a very
used one in digital processing. If p is a prime number, Z
is a field, because (1, 2,...., P — 1} form a group with
modulo p multiplication.

Sotheset {1,2,..., p-1} formsa field related to
modulo p addition and multiplication,

This field is called prime field and is noted by
GF(p). Thereisa generalisation which says that, for each
positive integer m, we should extend the previous field

into a field with p= elements, called the extension of the
field GF(p), noted by GF{p™),

Finite fields are also called Galois fields, which
Justify the initials of the hotation GF (Galois Field).
Field characteristic: We consider the finite field with g
elements GF(q), where q is a natural number. If | is the
neutral element for addition, be the summations :

1 2 k
Zl:i,Zi:Hl:Z, .... D l=1+1+k+1
=] =] i=1

Asthe field is closed with respect to addition, these
summations must be elements of the field.

The field having a finite number of elehents, these
summations cannot al| be distinct, so they must repeat

somewhere; there are two integers m and n (m < n), so
that

il = i} :&nﬁmi =0
1=] =1

A
There is the smallest integer A so that 21=0.
1=1
This integer is called the characteristic of the field GF(q).

The characteristic of the binary field GF(2) is 2,
because the smallest 2. for which

L
Z]:O is 2, méaning 1 +1 =0

i=1

The characteristic of the prime field GF(p) is p. It

A =y

* with A elements and it can be shown that if

—{(ITC.47)

I the characteristic of a finite field is a prime number

n m
2 forn,m<A, 2“‘2[

i=l i=]

3 .3 Al A
The summations: 1, Zl,Zl,...,Zi,Zl:O: are

i=l =1 i=l =l
A distinct elements in GF(q), which form a field with A
elements GF(L), called subfield of GF(q). Subsequently,
any finite field GF(q) of characteristic A contains asubfield

q# Athenq
is an exponent of A .

Order of an element : We proceed a similar manner
for multiplication: if a is a non zero element in GF(q),

the smallest positive integer, n, so that a® = | gives the
order of the element a.

This means thata, a2, .....,a"= ] are all distinct, so
they form a multiplicative group in GF(q).

A group is called cyclic group if it contains an
element whose successive exponents should give all the
elements of the group. Ifin the multiplicative group, there
are q-1 elements, we have a™' = | for any element, so
the order n of the group divides g-1.

In a finite field GF(q) an element a is called
primitive element if its order is q-1. The exponents of

such an element generate all the non zero elements of
GF(q). Any finite field has a primitive element.

Example : Let us consider the field GF(5), we have
2!=2,22=4,29=3 2= 1502 s primitive
31=3,32=4,3=23'=1503 s primitive
4'=4,42= 1,504 is not primitive.

B

K@E/:C/ojsfiéer a (7, 4) cylic code with generator
== polynomial g(x) = 1 + x + X' and let data word
A =01, ~————_

(@) Find corresponding systematic codeword. l/
(b) Find all the cyclic binary code of block length, v

(c) Find the minimum distance of each code. .—

[R.T.U. 2012}
H

Ans. Given
gx)=1+x+x
n=7
k=4
q=n-k=7-4=3
2* = 16 message vector
g s
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CoNvOLUTIONAL CODE

PaArT-A

Q.1 Define Code Tree. [R.T.U. 2018, 2016]

Ans. Code Tree
(a) Code tree indicate flow of the coded signal along
the nodes of tree.
(b) Code tree is lengthy way of representing coding
process. f
(c) Decoding is very simple using code tree.
(d) It repeats after no. of stages used in encoder.
(e) Itiscomplex to implement in programming.

Define Trellis. JR.TU. 2016]

Ans. Trellis :
(a) It indicates transitions from current to next state.

(b) Itisshorter or compact way of representing coding
process.

(c) Decoding is little complex using trellis diagram.

(d) It repeats in every stage in steady state, it has only
one stage.

(e) Itissimplerto implement in programming.

Q.3 Define Constraint Length. JR.T.U. 2016)

Ans. Constraint Length : Constraint length of a
convolutional code is defined as the number of shifts over
which a single information bit can influence the encoder

Previous YEARS QUESTIONS
#

raint lengths of the encoder form a vector

output. The const
the number of inputs in the encoder

whose length is

diagram. 7

— —————————

Q4 Def\‘i/gn an encoder for the (7, 4) binary cyclic code

__generated by g (x) I+x+ x* and verify its operation
using the message vectors (1001) and (1011).

[R.T. U. Dec.2013]

e —————————

Ans. Given gix)=1+x+ X
The given generator polynomial can be written

as.

gx)=1+x+0x2+x

g =1

g =0 .
(Comparing with equation x* + g,x* +g x + 1)
Encoder for generator polynomial g(x)=1+x+ x?

is given by figure
Feedback
‘ switch
- 1 8:=0
L]
F/F FF | -< >
output P
switch
o———L—m_essnge
codeword to bit
be transmitted

Fig.

Q.5 For a (7, 4) cyclic code, the received vector Z
(X) is 1110101 and g (x) = 1 + x + x*. Draw the
syndrome calculation ckt and correct the single

error in the reccived vector. [R.T.U.Dec. 2013}
, RN S U S

A



(aTc.50)
Ans. Given generator polynomial is
gA)=1+x+x*

gX)=x*+0x*+ 1.x+1 (i)
We know general form of generator polynomial is
given by: '
gx)=x’+gx’+gx+1 .. (i)
Comparing (i) & (ii) we get

! B,=0;g =1
The syndrome calculator is shown in fig.

IGI’ 0

FFI FF2 |__r_1—-£_
oufput  syndrome
'

S, switch  outpur

Fig. : Syndrome calculator for polynomial g(x) = I +x +x*

ParT-B

in the coding and decoding in the convolution

T e i [RTU. 2017}

: OR
Decoding Probability of Convolution code., .
= [RTV. 2018

* Ans. In telecommunication, a convolutional code is a type
of error-correcting code that generates parity symbols via
the sliding application of a boolean polynomial function to
a data stream. The sliding application represents the
'convolution’ of the encoder over the data, which gives
rise to the term ‘convolutional coding.’ The sliding nature
of the convolutional codes facilitates trellis decoding using
a time-invariant trellis. Time invariant trellis decoding
allows convolutional codes to be maximum-likelihood soft-

decision decoded with reasonable complexity.
Convolutional codes are often characterized by the
base code rate and the depth (or memory) of the encoder
[n,k,K). The base code rate is typically given as n/k, where
n is the input data rate and k is the output symbol rate.
The depth is often called the "constraint length" 'K/, where
the output is a function of the current input as well as the
previous K-1 inputs. The depth may also be given as the
number of memory elements 'v' in the polynomial or the
maximum possible number of states of the encoder

(typically 2%v).

Convolutional codes are often described as
continuous. However, it may also be said that convolutional
codes have arbitrary block length, rather than being
continuous, since most real-world convolutional encoding
is performed on blocks of data. Convolutionally encoded

—(B.Tech. (V Sem.) C.S. Solved Papers)
block codes typically employ termination. The arbitrary
block length of convolutional codes can also be contrasted
to classic block codes, which generally have fixed block
lengths that are determined by algebraic properties.

_The code rate of a convolutional code is commonly
modified via symbol puncturing. For example, a
convolutional code with a'mother’ code rate n/k=1/2 may
be punctured to a higher rate of, for example, 7/8 simply
by not transmitting a portion of code symbols. The
performance of a punctured convolutional code generally
scales well with the amount of parity transmitted. The
ability to perform economical soft decision decoding on
convolutional codes, as well as the block length and code
rate flexibility of convolutional codes, makes them very
popular for digital communications.

Decoding in Convolution code:

Several algorithms exist for decoding convolutional
codes. For relatively small values of k, the Viterbi
algorithm is universally used as it provides maximum
likelihood performance and is highly parallelizable. Viterbi
decoders are thus easy to implement in VLSI hardware
and in software on CPUs with SIMD instruction sets.

Longer constraint length codes are more practically
decoded with any of several sequential decoding
algorithms, of which the Fano algorithm is the best known.
Unlike Viterbi decoding, sequential decoding is not
maximum likelihood but its complexity increases only
slightly with constraint length, allowing the use of strong,
long-constraint-length codes. Such codes were used in
the Pioneer program of the early 1970s to Jupiter and
Saturn, but gave way to shorter, Viterbi-decoded codes,
usually concatenated with large Reed-Solomon error
correction codes that steepen the overall bit-error-rate
curve and produce extremely low residual undetected
error rates.

Both Viterbi and sequential decoding algorithms
return hard decisions: the bits that form the most likely
codeword. An approximate confidence measure can be
added to each bit by use of the Soft output Viterbi
algorithm. Maximum a posteriori(MAP) soft decisions for
each bit can be obtained by use of the BCJR algorithm

@ A convelutional code is given by :
g, =100, g,=[101],g,=[111]
(i) Draw the encoder corresponding to this code.
(ii) Draw the state - transition diagram for this

code.”
(ifi) Draw the trellis diagram for this code.
[R.T.U. 2016]

$ An'l

(information Theory and Coding j—

@ less is in err

&(x)
gi(x) +

(i)

Fig.2
(iii) nth moment (n+1)st moment

nth moment 000 (n+1)st moment

[R.T. U. Dec.2013]

Q.8 Define Brust error.

Aus. Burst-Error Detection and Correction

A Burst of length is defined as a sequence of digits in
which the first digit and the b™ digit are in error, with the b-2
digit in between either in error or received correctly. For
example an error vector e = 0010010100 has a burst length
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In usual transmission, we transmit one row after
another. In the interlaced case, we transmit columns (of
A elements) in sequence. When all the 15(n) columns are
transmitted , we repeat the procedure for the next ) code
words to be transmitted.

To explain the error correcting capability of this code,
we observe that the decoder will first remove the
interlacing and regroup the received digits as

Xy, X Xyso Mo V2N 50 310 2200215 Suppose that shaded
digits in fig.(a) were in error.

Because the code is a two-error correcting code, two
or less errors in each row will be corrected. Hence all the
errors in fig.(a) are correctable. In general, if the original
(m, k) code is t-error correcting, the interlaced code can
correct any combination of t bursts of length A or less.

‘@ Write short notes on Trellies codes. e

[R.T.U. Dec. 2013, 2013}

2.

Ans. Trellis codes : Refer to Q.
Trellis diagram
In shift register M, M,, will indicate the state of
encoder

So,let M;M;=0 0 State a

M,M; =0 1 State b

M,M;=1 0 State ¢

M2 M] =] 1 State d

Then state transition table is '
Current Ltxte | Input O/P Next State
M; M) M I1X[X]|X] MM

1.3
(a) 09 0 0 oOoroj|o 00 (a)
0 0 1 11 1] 01
®) 0 1! 0 o1 o] 10
0 I i 1ol 1] 11@
(©) 1 0 0 0l1]|1] 00
1 0 ! 1lolo| o1 @
(d) i3 0 010] 1 1 0 (c)
1 .1 1 1 110 1 1 (d)

Trellis diagram

{B.Tech. (V Sem.) C.S. Solved Papers )

Where Dotted line = 9/P M=0
Solid line = 9/P M=1

000
000 a
= *m
w | ey
L 'b o0 °°
000 : 111 L—»_—0d
i 101
ot0 [ on o2
iy c
b
M=0 $ 1
11 b 'd 001 °°¢
10 - L, od
110
e 11 - o
i [ 000 © 2
- c 111
M=ly ._Hc
a1y 010
100 :
l———.-——od
101
s b 001 | a
= L5 T
b
L, 14 100
\ 101 R P T
110 q
110

Fig. : Code tree for given encoder

wipdim

Q.10 Initially consider that the regist-er contains all
zeroes. What will be the code sequence if the
input data sequence is 100110?

_;h—)% -l_
™/

e [RTU. 2013)
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Table : Decoding procedure for the coder shown in fig. 2 3. If rec 'T\l_nm (L Sem) O Soloed papers) (Eformacion Theory and Coding) 2 iresaj
[T ] Fle e le e e le e e Te . eive sequence is exactly, identical to a 8. Now firstly without reference to received sequence 14. From trellis diagram we can notice that there are
X Ix — 215 % (% f:q“’"“ corresponding to some particular path let us trace the possible paths through encoder state two paths to reach at K = 4 state (b) and cumulative
= " corr::sg:o:g?:; then we shall assun;]e that s shown in trellis. d:scrcpanc‘lies is written. H:'(‘;)“mﬂ‘;bm
5 X X |X input sequence is the one 9. ‘Starting fro inclocki k= . minimum discrepancies o .. another is
corresponding t gt A ing from (a) in clock interva 1, a0 will cause . = 3
: # X " X 1% ponding to some particular path. an output = 00 and will carry encoder in state (a). a | d.lscarded, the .diﬁctm‘led path is shown by X.
e < - X 1x S,=b, . will generate output 11 and will carry encoder to <. No paths surviving = no of states.
o O . LES state (c). 15. Surviving paths can be redrawn as shown : K =1,
L5 | X X 10. The number of discrepancies in each clock cycle E=3X=2Kr4 =
In shon Wwe can say : b«_:tween the bits associ_ated \fvilfa rallis ir_) trellis K=1 K=2 K=3 K=4
If all input data sequences are equally likely, a diagram and actual received bits is shown in fig. 2 o) .. %0 ..
decoder that chooses 3 if 11. Thus if starting state is (a) at K = 1, a0 output |
R R etk cm e K generate an output = 00. Since, actual output is 10,
i b 3 Fig. 1 the number of bit discrepancies = 1.
b A ' 4. If we find no exact corresponding, then we shall 12. Innextinterval if input= 0 should again yield output
b=10"* assume that input sequence to be one whose path = 00 and since the corresponding set of received @
generates the ﬁ?wer bit discrepancies when bit is also 00 .. number discrepancies = 0. The
c=01 ® compared to received sequence. cumulative discrepancies shown in circles.
5. Nowtoillustrate viterbi algorithm let us use encoder. "
" Here v =85 &8 K=1 K=2 K=3 K=4
d=I1 ® b4 1 1 3 004
n',:l i ' v.=S,@5.05, . D0 2w e
& state 1um
P(r| &) = maxp(re;) foralle, MM, P
(D] on b
where r is the received sequence and c; is one of the o1 i . "
possible transmitted sequences, is called the maximum o e ; Fig. 4 _ -
likelihood decoder. The conditional probabilities P(rc;) 16. Here we notice for output sequence of path through
are called the Iike‘liimad [ functions. Note. that t‘m.- the BSC 5 5 10 2 3 trellis corresponding to input bit stream consisting
(binary symmetrical c.ha.nne!) t!\e maximum likelihood of all ‘0’ yields minimum no of discrepancies. With
decoder_m_duces tt?l minimum distance decoder. The rule such as result we would then decide that input
of the minimum distance decoding is as follows : Choose @ . s sequence was all zero’s, the received sequence as
& that minimizes the Hamming distance between the ~ is readily verified should be all 0’s.
. . 4 i
received sequence r and th_e— transmitted sequence c. ) 0 i 17. Because of noise of received sequence = 10 00 10
S — / i , 00 00, the coder would have correct two errors.
: PRI 4 m . e 18. As the number of paths are reduced .. memory
Explain the viterbi algorithm. ] ' required isreduced. .
V T i e . Flz-j " . ——
OR 6. Now initially encoder is clear To reach state (c) at K =3 we go from e = Q.13 Explain the operation of any convolutional
Write short note on Viterbi Decodj M,M, =00 E’fag ‘? =r2 e from (a) & |K gLl encoder with the help of block diagram.
[R.T.U.Dec. 2013/ Let there be presented at encoder a sequence of M pall RGN [RTU. 2016]
five information bits and let it be the corresponding In second path discrepancy =2 ‘
. . ———meeeeeeeeeeeeeeeeeeeeee e
Viterbi Algorithm : A i lative =3
Ass. o ol il ks Wil e et sequence V,, Vo, bits are SRS Ans. Encoder for Convolutional Code : An encoder
. : . . Suppose ; 2 T :
i R CONSIE S it BN b bl V. V. =1000100000 13. Suppose that we have to move from state (a) at for a convolution code is shown in Fig. In this case.
_!i-om starting point to the end_pomt. Each possible L i e K = | to state (a) K = L. How let us assume that K = 00, o shilt Tagiaters
input bit sequence generates its own path. : 7. Nowtrellis diagram path from state (b) at K =4 to state (a) at K =L is -1 '
2. For such path we determine the corresponding Here from state (a) is 00 if 0 is read, then received fixed. § £ midile:d
. : e ; ; = no. of modulo-2 adders
s;quﬁwe ofeo:ier output bts";n:cmp:::::g b_:ts are 00 and if | is read then, received bitsare 11.In . We have to choose minimum discrepancy path o st o R s e Aok
of thess output sequences cither case V V., # 10. from state (a) at K = 1 to state (b) at K = 4. =1
sequence. :

 e———



